Federal University of Santa Catarina (UFSC) Joinville Technological Center (CTJ) Graduate Program in Engineering and Mechanical Sciences (Pós-ECM)

Course: Plasmas and Electrical Discharges in Gases (ECM410054) Professor: Diego A. Duarte

Behavior of charged particles in a gas in electric fields of high E/p (List 6)

1. Determine the first Townsend ionization coefficient for hydrogen for the E/po range of 20 to 600 V /em-torr and plot your results as a/po against E/po. Use A and B values from table below (Table 7.1 from Nasser):

Gas	A ionizations/cm-torr	<i>B</i> V/cm-torr	E/p Validity Range V/cm-torr
Air	15	365	100-800
N_2	12	342	100-600
H₂	5.1	138.8	20-600
He	3	34	20-150
Ne	4	100	100-400
A	14	180	100-600
Kr	17	240	100-1000
Xe	26	350	200-800

and compare your curve with that of figure below (Fig. 7.3 from Nasser):

- 2. From the data of problem 1, calculate (a) the mean free path of electrons in hydrogen at p = 1 torr, (b) the ionization potential of hydrogen. Discuss discrepancies, if any, with values obtained previously using other methods.
- 3. From the above, calculate η_{max} for H₂.

- 4. In an experiment to measure a for a certain gas, it was found that the steady-state current is 3.8×10^{-8} A at a voltage of 8 kV and a distance of 0.4 cm between the plane electrodes. Keeping the field constant and reducing the distance to 0.1 cm resulted in a current of 3.8×10^{-9} A: (a) calculate α ; (b) calculate the number of electrons emitted from the cathode per second.
- 5. At the conditions of problem 4, determine the electrode spacing that would lead to an electrode multiplication factor of 10⁸.
- 6. In a nonuniform field near an anode, a was found to be given by:

$$\alpha = b - a\sqrt{x}$$
 cm⁻¹

where $b = 3.5 \times 10^3$ and $a = 10 \times 10^3$ and the origin is at the anode surface. If an electron starts its motion toward the anode at a distance of 0.1 mm, determine the total number of electrons reaching the anode.

- 7. If an electron starts at a distance of 0.5 mm in a field where $\alpha = b x$ (cm⁻¹), find the distance it must travel to produce an avalanche of 1020 electrons. Use the *a* and *b* constants of the above problem.
- 8. In the field given in problem 7, determine the *minimum distance* from the anode from which an electron may start an avalanche having a total number of electrons of 10^{20} .