

Federal University of Santa Catarina Graduate Program in Engineering and Mechanical Sciences

Plasmas and electrical discharges in gases (ECM410054)

Diego Alexandre Duarte Laboratory of Surface Treatments

SUMMARY

Plasmas and electrical discharge in gases

- Kinetic theory of gases
- Atomic structure
- lonization
- Deionization
- Electron emission
- Behavior of charged particles in a gas in electric fields of low E/p
- Behavior of charged particles in a gas in electric fields of high E/p
- Glow discharges
- Plasmas

• The basics of the kinetic theory of gases was set by James Clerk **Maxwell** (1831-1879) and Ludwig **Boltzmann** (1844-1906):

- Condition for an ideal gas:
 - Spherical and solid particles
 - Random motion
 - Elastic collisions
 - Large mean free path
 - Linear motion between two collisions

KINETIC THEORY OF GASES

Kinetic energy, temperature and velocity distribution

• For energy stored in translational form:

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_BT$$

where *m* is particle mass, $k_{\rm B}$ the Boltzmann constant, *T* the gas temperature and $\overline{v^2}$ the mean square speed:

$$\overline{v^2} = v_{rms}^2 = \int_0^\infty v^2 f(v) dv$$
 \therefore $v_{rms} = \sqrt{\frac{3k_BT}{m}}$

where f(v) is the velocity distribution given by the Maxwell-Boltzmann function:

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_BT}\right)^{3/2} v^2 e^{-\left(\frac{mv^2}{2k_BT}\right)}$$

• The most probable and average speed are given by:

$$\frac{d}{dv}f(v) = 0 \quad \therefore \quad v_{mp} = \sqrt{\frac{2k_BT}{m}}$$

$$v_{av} = \int_0^\infty v f(v) dv = \sqrt{\frac{8k_B T}{\pi m}}$$

KINETIC THEORY OF GASES Kinetic energy, temperature and velocity distribution

• The MB function calculates the fraction of particles with a given speed v for an ideal gas with temperature T:

KINETIC THEORY OF GASES

Kinetic energy, temperature and velocity distribution

• For a gas composed by argon atoms at 20°C (~ 293 K):

$$v_{mp} = \sqrt{\frac{2k_BT}{m}} = \sqrt{\frac{2(1.38 \times 10^{-23})(293)}{6.63 \times 10^{-26}}} = 349.2 \text{ m/s} = 1257.3 \text{ km/h}$$

$$v_{av} = 1.128 v_{mp} = 393.9 \text{ m/s} = 1418.2 \text{ km/h}$$

$$v_{rms} = 1.224 v_{mp} = 427.4 \text{ m/s} = 1538.7 \text{ km/h}$$

$$\frac{1 \text{ eV}}{1.48} = 1.224 v_{mp} = 427.4 \text{ m/s} = 1538.7 \text{ km/h}$$

$$\frac{1}{2} m v_{rms}^2 = \frac{3}{2} k_B T = 6.0 \times 10^{-21} \text{ J} = 37.8 \text{ meV} \quad \therefore \quad T \approx 293 \text{ K}$$

The speed of sound is 343 m/s ≈ 1235 km/h. So, they are fast! The distribution velocity function is given by:

$$f(v) = (5.297 \times 10^{-8})v^2 e^{-[(8.198 \times 10^{-6})v^2]} \text{ (s/m)}$$

Area under the curve = $\int_0^\infty f(v) dv = 1$ Normalized

KINETIC THEORY OF GASES

Kinetic energy, temperature and velocity distribution

• The gas particles bounce the walls, exerting force per unit area. This property is known as **pressure**:

$$p = \frac{F}{A} = nk_BT = \frac{n}{3}mv_{rms}^2$$

where *n* is the gas density (particles per volume unit).

• The pressure for a gas composed by two or more particles is given by the sum of the partial pressures:

$$p = p_1 + p_2 + \ldots + p_N$$

where N represents the N-th gas.

• The pressure commonly used in plasmas are **torr**: <u>760 torr = 760 mmHg</u> or <u>1Pa = 7.5</u> <u>mtorr</u>. Many plasma processing techniques, under low pressure, operate between 1 torr and 1 mtorr. For this condition, a vacuum system is required!

The number of particles at STP is given by:

$$p = nk_BT = \frac{N}{V}k_BT$$
 \therefore $N = \frac{pV}{k_BT} = \frac{(1.01325 \times 10^5)(0.0224)}{(1.38 \times 10^{-23})(273)} = 6.02 \times 10^{23}$ particles

which is known as the **Avogadro's number** and is defined as **1 mole of particles**. The gas density is: ity

$$n = \frac{N}{V} = \frac{6.02 \times 10^{23}}{0.0224} = 2.7 \times 10^{19} \text{ cm}^{-3}$$
 Standard densiti

that is the same order of magnitude of atmospheric He plasmas excited by RF source:

Parameter	He low pressure plasma	He atmospheric pressure plasma
Pressure (p)	100 mTorr	760 Torr
Gas density (n)	$3.2 \times 10^{15} \text{ cm}^{-3}$	$2.5 \times 10^{19} \text{ cm}^{-3}$
Electrode gap distance (d)	10 cm	1 cm
Angular excitation frequency (ω)	13.56 MHz	13.56 MHz
Electron temperature (T_e)	3 eV	1 eV
Electron-neutral collision frequency (ν)	150 MHz	1 THz
pd	~ 1 Torr cm ($\leq pd_{\min}$)	\sim 760 Torr cm ($\gg pd_{\min}$)
E/n	10-100 Td	10–100 Td
$\omega_{\rm rf}/\nu$	~ 0.1	$10^{-5} (\ll 1)$

• The particle flux *f* on the walls per unit area and time for argon at STP is given by:

$$f = \frac{1}{4}nv_{av} = \frac{1}{4}\left(\frac{p}{k_BT}\right)\sqrt{\frac{8k_BT}{\pi m}} = \frac{p}{\sqrt{2\pi k_BmT}} = \frac{1.01325 \times 10^5}{\sqrt{2\pi (1.38 \times 10^{-23})(6.63 \times 10^{-26})(273)}}$$
$$f = 2.6 \times 10^{23} \text{ cm}^{-2} \cdot \text{s}^{-1}$$

• The gas-surface interaction plays a fundamental role in plasmas-assisted process, such as for film deposition, thermal treatment and etching.

Thin film deposition by sputtering

Surface and Coatings Technology, 466 (2023) 129688

https://doi.org/10.1016/j.surfcoat.2023.129688

6.26µm 15.18µm ×4.5k 10um

Silicon etching Sensors and Actuators A: Physical Volume 144, 2008, 109-116 https://doi.org/10.1016/j.sna.2007.12.026

KINETIC THEORY OF GASES Mean free path

λ_6	\bigcirc	
λ_5		(
\bigcirc	λ_4 λ_3	
\bigcirc	λ_2	
\bigcirc		

$$\lambda = \sum_{i=1}^{N} \lambda_i$$

where N is the number of individual free paths.

• The average distance travelled by a particle between two successive collisions:

$$\lambda = \frac{1}{4\sqrt{2}\pi r^2 N} = \frac{k_B T}{4\sqrt{2}\pi r^2 p}$$

where *r* is the particle radius. For the previous example:

$$\lambda = \frac{k_B T}{4\sqrt{2}\pi r^2 p} = \frac{(1.38 \times 10^{-23})(273)}{4\sqrt{2}\pi (1.82 \times 10^{-10})^2 (1.01325 \times 10^5)} = 6.3 \times 10^{-8} \text{ m} = 63 \text{ nm}$$

Table 1.1 Values of the Mean Free Path λ_{g} of Some Gas Molecules, Their Mean Velocity \bar{v} and Their Collision Frequency \bar{v}_{c} Calculated from the Kinetic Theory of Gases at $T = 288^{\circ}$ K and p = 760 torr[5].

Gas	Molecular weight	λ, 10 ^{- 8} m	₽ m/sec	$\bar{\nu}_c$ 10^9sec^{-1}	Diameter Å
H ₂	2.016	11.77	1,740	14.8	2.74
He	4.002	18.62	1,230	6.6	2.18
H ₂ O	18.000	4.18	580	13.9	4.60
Ne	20.180	13.22	550	4.2	2.59
N_2	28.020	6.28	467	7.4	3.75
02	32.000	6.79	437	6.4	3.61
A	39.940	6.66	391	5.9	3.64
CO ₂	44.000	4.19	372	8.8	4.59
Kr	82.900	5.12	271	5.3	4.16
Xe	130.200	3.76	217	5.8	4.85
				Second and Second and Second	

E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, New York: Wiley, 1971.

KINETIC THEORY OF GASES Probability and frequency of collisions

• The probability of collision for a gas particle is given by:

$$P = e^{-x/\lambda}$$

where *x* is the travelled distance without colliding. The probability of a particle travels 100 nm without colliding, for the previous example, is:

$$P = e^{-\frac{100 \times 10^{-9}}{6.3 \times 10^{-8}}} = 0.204 \quad \therefore \quad P_{\%} = 20.4\%$$

• The number of collisions per second (frequency of collisions) is:

$$f = \frac{v_{av}}{\lambda} = \frac{1}{\lambda} \left[1.128 \sqrt{\frac{2k_B T}{m}} \right]$$

$$f = \frac{1}{(6.3 \times 10^{-8})} \left[1.128 \sqrt{\frac{2(1.38 \times 10^{-23})(273)}{6.63 \times 10^{-23}}} \right] = 6.0 \text{ GHz}$$

• The inlet rate of a gas flowing in a plasma assisted experiment is known as **flow rate** and measured in **sccm** (standard cubic centimeter per minute). This unit is defined at STP as:

1 sccm =
$$\frac{N}{V} = \frac{p}{k_B T} = \frac{1.01325 \times 10^5}{(1.38 \times 10^{-23})(273)} = 2.7 \times 10^{19} \text{ cm}^{-3} \text{ per minute}$$

- The flow rate depends on working pressure, gas type etc, ranging from units (low pressure gases) to thousands* (high pressure gases) of sccm.
- For low pressure plasmas, the use of a vacuum system is required.

- Chapter 1 E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics.
- Chapter 1 B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching.

See you next topic!

Diego A. Duarte diego.duarte@ufsc.br https://lats.ufsc.br

