

Federal University of Santa Catarina Graduate Program in Engineering and Mechanical Sciences

Plasmas and electrical discharges in gases (ECM410054)

Diego Alexandre Duarte Laboratory of Surface Treatments

SUMMARY

Plasmas and electrical discharge in gases

- Kinetic theory of gases
- Atomic structure
- lonization
- Deionization
- Electron emission
- Behavior of charged particles in a gas in electric fields of low E/p
- Behavior of charged particles in a gas in electric fields of high E/p
- Glow discharges
- Plasmas

• One of the most simple models for the atomic structure is based on the following two postulates:

First postulate:

"The electron can exist only in certain stable orbits":

$$mvr = \frac{nh}{2\pi}$$
 (1)

https://pt.wikipedia.o rg/wiki/Niels_Bohr

where *m* is the electron mass, *v* the orbital speed, *r* the orbital radius, *n* the primary quantum number (= 1, 2, 3, ...) and *h* the Planck constant (6.63×10⁻³⁴ J/s).

Second postulate:

"When the energy of an atom changes from a value E_2 to a lower value E_1 the difference in energy is emitted as a quantum of radiation whose frequency is given by the relation:

$$h\nu = E_1 - E_2 \tag{2}$$

Similarly, the electron energy increases from E_1 to E_2 after absorption of external radiation. This process describes a particle excitation or ionization.

• The orbital radius is given by:

$$F = \frac{e(eZ)}{4\pi\epsilon_0 r^2} = \frac{mv^2}{r} \therefore r = \frac{e^2 Z}{4\pi\epsilon_0 mv^2}$$

where e is the fundamental charge and Z the atomic number (number of protons). Replacing the first postulate in equation 3 we obtain the orbital radius of the n-th quantum shell:

$$r = \frac{e^2 Z}{4\pi\epsilon_0 m v^2} = \frac{e^2 Z}{4\pi\epsilon_0 m \left(\frac{nh}{2\pi m r}\right)^2} \therefore \left| r_n = \frac{\epsilon_0 n^2 h^2}{\pi m e^2 Z} \right|$$
(3)

- Replacing the constants: $\circ \quad \varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$ $\circ \quad m = 9.11 \times 10^{-31} \text{ kg}$

 - $\circ e = 1.6 \times 10^{-19} \text{ C}$

we get

$$r_n = \frac{\epsilon_0 n^2 h^2}{\pi m e^2 Z} = 5.31 \times 10^{-11} \frac{n^2}{Z}$$

The orbital radius of an electron at the fundamental state is $r = 0.531 \times 10^{-10}$ m. This result shows that the diameter of the H atom is around 1×10^{-10} m (1 A).

ATOMIC STRUCTURE Bohr model - orbital radius

First four orbits of the H atom.

E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, New York: Wiley,

• The kinetic energy of an electron in orbital motion at the *n*-th quantum shell is given by:

$$K_n = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)^2 = \frac{n^2h^2}{8\pi^2 mr^2}$$
(4)

• Replacing equation 3 in equation 4:

$$K_n = \frac{n^2 h^2}{8\pi^2 m \left(\frac{\epsilon_0^2 n^4 h^4}{\pi^2 m^2 e^4 Z^2}\right)} \therefore \left[K_n = \frac{m e^4 Z^2}{8\epsilon_0^2 n^2 h^2}\right]$$
(5)

• K_n increases as the primary quantum number decreases. If the atom is at rest, K_n is also its total kinetic energy.

• The stored potential energy is given from the work done on the electron by the electrical force produced by the atom nucleus:

$$U = -\int_{\infty}^{r} \vec{F} \cdot d\vec{r} = \int_{\infty}^{r} \left[\frac{e(eZ)}{4\pi\epsilon_0 r^2} \right] dr$$

$$U = \frac{e^2 Z}{4\pi\epsilon_0} \int_{\infty}^{r} \frac{dr}{r^2} \therefore \left[U = -\frac{e^2 Z}{4\pi\epsilon_0 r} \right]$$
(6)

• Replacing equation 3 in equation 6 we get the potential energy stored by the electron at the *n*-th quantum shell:

$$U_n = -\frac{e^2 Z}{4\pi\epsilon_0 \left(\frac{\epsilon_0 n^2 h^2}{\pi m e^2 Z}\right)} \therefore U_n = -\frac{m e^4 Z^2}{4\epsilon_0^2 n^2 h^2}$$
(7)

• The negative sign assigned to the potential energy means that the electron is in a "bound state". The total electron energy at the n-th quantum shell is given from equations 5 and 7:

$$E_n = K_n + U_n = \frac{me^4 Z^2}{8\epsilon_0^2 n^2 h^2} - \frac{me^4 Z^2}{4\epsilon_0^2 n^2 h^2} = -\frac{me^4 Z^2}{8\epsilon_0^2 n^2 h^2} = -\frac{E_i}{n^2}$$

where $E_i = me^4 Z^2 / 8\varepsilon_0^2 h^2$ is the ionization atom energy. For an H atom, the ionization energy, *i.e.*, the energy required to unbound the electron from the nucleus electric field is given by:

$$E_i = -\frac{me^4 Z^2}{8\epsilon_0^2 h^2} = -2.16 \times 10^{-18} J = -13.6 \text{ eV}$$

• Consider a transition between quantum states, from n_1 to n_2 . When the electron come back to the fundamental state, the energy absorbed in the excitation process is released as radiation:

$$h\nu = E_2 - E_1 = -\frac{me^4Z^2}{8\epsilon_0^2 n_2^2 h^2} + \frac{me^4Z^2}{8\epsilon_0^2 n_1^2 h^2} = \frac{me^4Z^2}{8\epsilon_0^2 h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

• The radiation is an electromagnetic wave travelling at the speed of light c with wavelength λ :

$$\frac{hc}{\lambda} = \frac{me^4 Z^2}{8\epsilon_0^2 h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \therefore \left[\frac{1}{\lambda} = \frac{me^4 Z^2}{8\epsilon^2 ch^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)\right]$$
(8)

• Equation 8 can be rewritten as:

$$\frac{1}{\lambda} = \frac{me^4 Z^2}{8\epsilon^2 ch^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \tag{9}$$

where $R = 1.09 \times 10^7$ m⁻¹ is the Rydberg constant. Equation 9 presents a direct relation between the radiation wavelength emitted by an atom with the distance between the transition shells.

• For a transition from $n_2 = 6$ to $n_1 = 2$, equation 9 gets:

$$\frac{1}{\lambda} = R(1)^2 \left[\frac{1}{(2)^2} - \frac{1}{(6)^2} \right] = \frac{2}{9}R$$

that means $\lambda \sim 410$ nm (visible – violet). For a transition from $n_2 = 3$ to $n_1 = 2$:

$$\frac{1}{\lambda} = R(1)^2 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = \frac{5}{36}R$$

we get $\lambda \sim 660$ nm (visible - red).

 $\lambda \sim 660 \text{ nm}(\text{H}_{\alpha})$ $\lambda \sim 410 \text{ nm}(\text{H}_{\delta})$

ATOMIC STRUCTURE Bohr model - photon emission

• The H spectral lines are described by Lyman, Balmer, Paschen e Bracket series:

<u>Lyman</u>: transitions to n = 1<u>Balmer</u>: transitions to n = 2<u>Paschen</u>: transitions to n = 3<u>Bracket</u>: transitions to n = 4

• Chapter 2 - E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (pages 24-32).

See you next topic!

Diego A. Duarte diego.duarte@ufsc.br https://lats.ufsc.br

