

Federal University of Santa Catarina Graduate Program in Engineering and Mechanical Sciences

Plasmas and electrical discharges in gases (ECM410054)

Diego Alexandre Duarte Laboratory of Surface Treatments

SUMMARY

Plasmas and electrical discharge in gases

- Kinetic theory of gases
- Atomic structure
- lonization
- Deionization
- Electron emission
- Behavior of charged particles in a gas in electric fields of low E/p
- Behavior of charged particles in a gas in electric fields of high E/p
- Glow discharges
- Plasmas

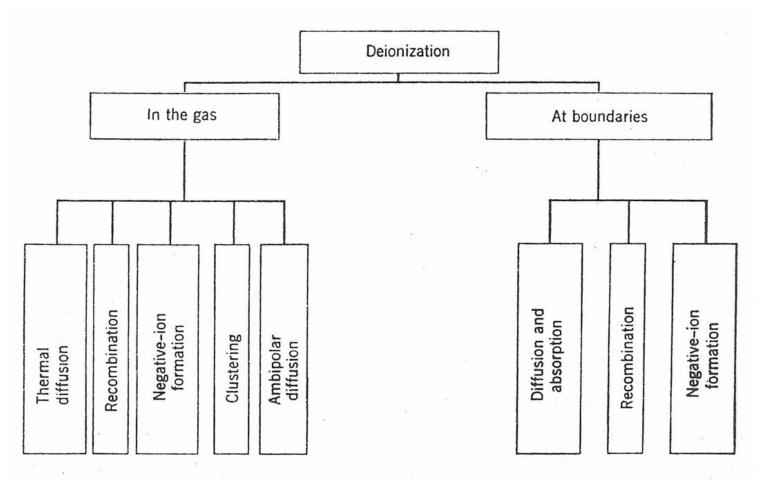
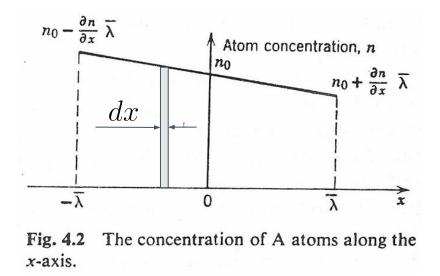


Fig. 4.1 Schematic diagram of possible deionization processes.

- Diffusion is caused by the difference in partial pressure or in molecular concentration. Consider a nonuniform distribution of gas A within a uniform gas B of higher concentration. Then, we shall state the following assumptions:
 - Number of atoms A per unit volume is much less than that of B.
 - All the A atoms have the same average speed v and the same mean free path λ .
 - Concentration of the A atoms changes in the *x*-direction only.



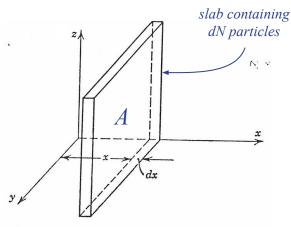


Fig. 4.4 A slab of unit cross section between x and x + dx for the evaluation of the change in particle density due to diffusion.

• Consider the case when the concentration gradient is linear:

$$n = n_0 + \left(\frac{\partial n}{\partial x}\right) x$$

• To calculate the number of A atoms crossing the plane perpendicular to the *x*-axis at x = 0 from the left to right and then vice-versa, we shall consider all the A atoms to the leftof this plane. Since motion in all directions is equally probable, then only one-sixth of the atoms will be moving in the positive x-direction:

$$n = \frac{dN}{dV} = \frac{dN}{Adx}$$
 : $\frac{dN}{A} = dj = ndx$

where dN is the number of particles in dx crossing the plane dA represented by dj. The total amount particles crossing the plane from left to the right j is:

$$j' = \frac{1}{6} \int_{-\lambda}^{0} \left[n_0 + \left(\frac{\partial n}{\partial x}\right) x \right] dx$$
$$j' = \frac{1}{6} \left[n_0 \lambda - \frac{1}{2} \left(\frac{\partial n}{\partial x}\right) \lambda^2 \right] = \frac{1}{6} \left[n_0 vt - \frac{1}{2} \left(\frac{\partial n}{\partial x}\right) (vt)^2 \right]$$

where t is the time between two successive collisions. The flow of charges is given by:

$$\frac{\partial j'}{\partial t} = \frac{1}{6} \left[n_0 v - \left(\frac{\partial n}{\partial x} \right) \lambda v \right]$$

• Similarly, we can calculate the number of A atoms crossing the plane x = 0 from right to left as:

$$j'' = \frac{1}{6} \int_{\lambda}^{0} \left[n_0 + \left(\frac{\partial n}{\partial x}\right) x \right] dx$$

$$\frac{\partial j''}{\partial t} = -\frac{1}{6} \left[n_0 v + \left(\frac{\partial n}{\partial x} \right) \lambda v \right]$$

• Then the resultant number of A atoms crossing the plane from left to the right is:

$$J = \frac{\partial j'}{\partial t} + \frac{\partial j''}{\partial t} = \frac{1}{6} \left[n_0 v - \left(\frac{\partial n}{\partial x}\right) \lambda v \right] - \frac{1}{6} \left[n_0 v + \left(\frac{\partial n}{\partial x}\right) \lambda v \right]$$

where *J* is the flow of charges (current density):

$$J = -\frac{1}{3}\lambda v \frac{\partial n}{\partial x}$$

• In three coordinates, the above equation is given by:

$$\vec{J} = -D\vec{\nabla}n$$

where $D = \lambda v/3$ is the diffusion coefficient. The above equation states the following assumptions:

- The negative sign indicates that the flow of atoms is opposite to the concentration gradient;
- The flow stops when the gradient is zero.

Considering the densities n⁺ and n⁻ of the positive and negative particles, respectively. The number of recombinations per unit time must be proportional to n⁺ and n⁻. If the constant of proportionality is ρ then:

$$dn = \boxed{-\rho n^+ n^- dt}$$

Radiative recombination

 $e^- + Ar^+ \rightarrow Ar + h\nu$

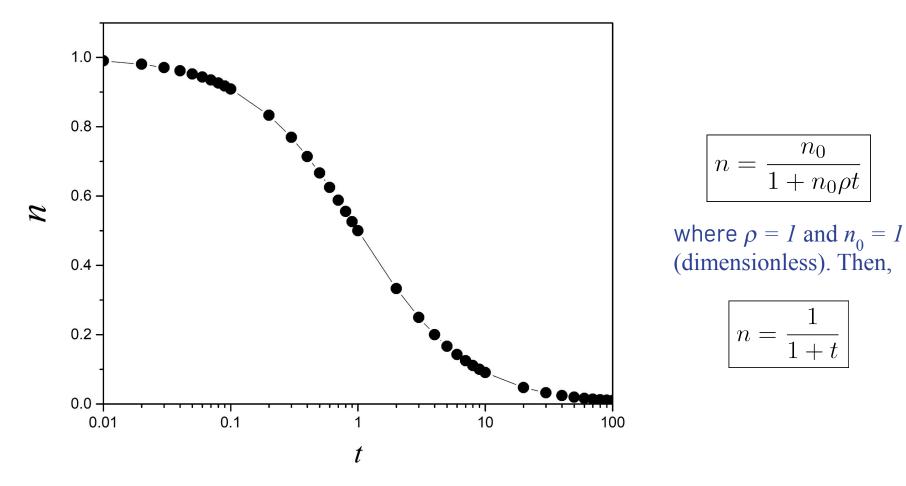
where here we assume the so-called quasi-neutrality condition $(n^+ = n^- = n)$. Then,

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & e^{-} & Ar^{+} & Ar \end{array} \end{array}$

$$dn = -\rho n^2 dt$$

$$\int_{n_0}^{n} \frac{dn}{n^2} = -\rho t \quad \therefore \quad \left| n = \frac{n_0}{1 + n_0 \rho t} \right|$$

that is defined as "ion-loss equation" where ρ is defined by plotting 1/n versus t.



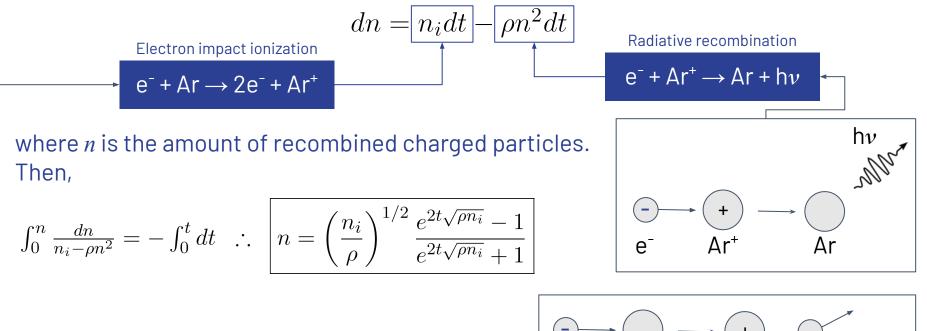
 n_0

 $1 + n_0 \rho t$

 $n = \frac{1}{1+t}$

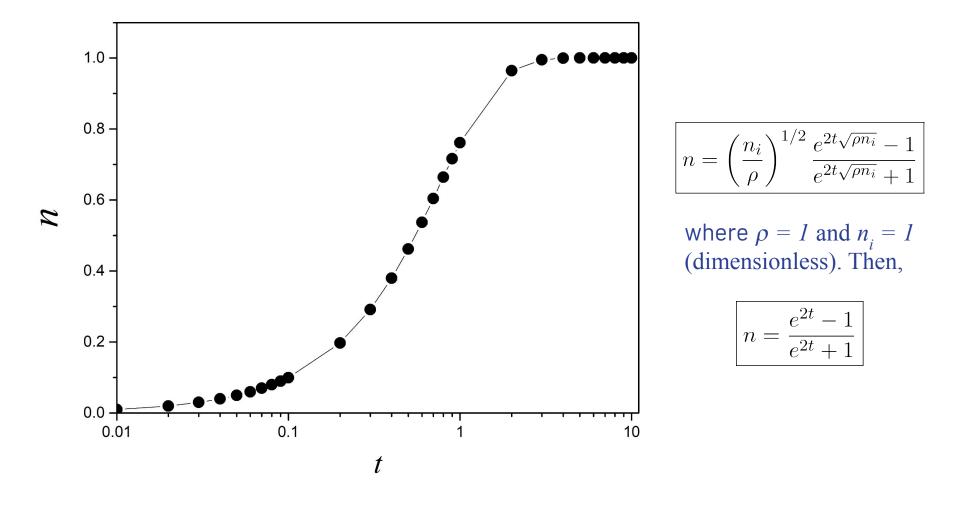
n =

 If, however, the gas is subject to an external ionizer that continuously ionizes some neutral particles, an increase in the charge-particle density n will take place. If the density of newly ionized particles per second is n, we get:



e⁻

that is defined as "ionization-growth method".



DEIONIZATION

Recombination processes: electron attachment (examples)

• Radiative recombination:

 $e^- + Ar^+ \rightarrow Ar + h\nu$

• Dissociative recombination:

$$e^{-} + 0_{2}^{+} \rightarrow 0 + 0$$

• Dielectronic recombination:

 $e^- + Ar^* \rightarrow Ar^{**} (Ar^{**} \rightarrow Ar^+ + e^- (autoionization))$

• Three-body-recombination;

$$A^{+} + B + e^{-} \rightarrow A^{*} + B$$
$$A^{+} + 2e^{-} \rightarrow A^{*} + e^{-}$$

• Radiative attachment (the reverse case is called photodetachment):

 $e^- + 0 \rightarrow 0^- + hv$

• Three-body attachment:

 $e^- + A + B \rightarrow A^- + (B + W_K)$

• Dissociative attachment (the reverse case is called associative detachment):

 $e^- + AB \rightarrow A^- + B$

• Charge transfer between heavy particles:

$$A + B \rightarrow A^+ + B^-$$

• Chapter 4 - E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (pages 102-107; 114-118).

See you next topic!

Diego A. Duarte diego.duarte@ufsc.br https://lats.ufsc.br

