

Federal University of Santa Catarina Graduate Program in Engineering and Mechanical Sciences

Plasmas and electrical discharges in gases (ECM410054)

Diego Alexandre Duarte Laboratory of Surface Treatments

SUMMARY

Plasmas and electrical discharge in gases

- Kinetic theory of gases
- Atomic structure
- lonization
- Deionization
- Electron emission
- Behavior of charged particles in a gas in electric fields of low E/p
- Behavior of charged particles in a gas in electric fields of high E/p
- Glow discharges
- Plasmas

- In 1887, the photoelectric effect was discovered by Heinrich Hertz while he was experimenting with electromagnetic waves.
- In 1905, Einstein formulated his explanation if this effect and showed that a threshold frequency exists below which no emission can take place.
- Energy conservation:

$$h\nu = \frac{1}{2}mv^2 + W$$

where W is the work done to separate one electron by an incident photon of energy hv. Setting $W_{\min} = e\phi$ as the **material work function** we get:

$$h\nu = \frac{1}{2}mv_{max}^2 + e\phi$$

Fig. 5.2 Schematic diagram of an experimental arrangement for the study of photoemission

https://pt.wikipedia.org/wiki/Heinrich_He

https://pt.wikipedia.org/wiki/Albert_Einstein

 If the acceleration potential is set up so that the photocurrent *i* just ceases to flow, this stopping voltage V₀ equals the maximum kinetic energy an electron can possess at emission:

$$h\nu = \frac{1}{2}mv_{max}^{2} + e\phi \text{ where } \frac{1}{2}mv_{max}^{2} = eV_{0} \therefore V_{0} = \frac{1}{e}(h\nu - e\phi)$$

$$\stackrel{eV_{0}}{\longrightarrow} \int_{v_{0}e} \frac{1}{h} \int_{v_{0}e} \frac{1}{h} \int_{v_{0}e} \frac{e\phi}{h} \int_{v_{0}e} \frac{1}{h} \int_{v_{0}e} \frac$$

• The increase of the light frequency increases the number of emitted photoelectrons.

Fig. 5.4 The current *i* as a function of the intensity of the monochromatic radiation *I* for two frequencies ν_1 and ν_2 , where $\nu_1 > \nu_2$.

Table 5.1 Work Functions $(e\phi)$ of Some Elements in eV as Measured Photoelectrically and Thermionically [3]

Element	Photoelectric Thermionic Work Function, eV	
Ag	4.74	3.08-3.56
Al	2.98-4.43	
Au	3.9-4.92	4.0-4.58
Ba	1.9-2.49	2.11
С	4.81	4.39
Ca	2.42-3.21	2.24
Cs	1.38-1.9	1.81
Cu	4.07-4.8	3.85-4.38
Fe	3.91-4.7	4.04-4.77
Ĺi	2.28-2.42	
Mg	2.15-3.75	
Ni	4.06-5.2	4.61-5.24
Rb	2.9-2.16	
Ta	4.05-4.16	4.07-4.19
·U	3.63	3.27
W	4.35-4.6	4.52

• The thermionic emission is described by Richardson equation:

• The current density produced by field emission is given by:

$$j = j_0 \exp\left(\frac{B\sqrt{E}}{T}\right)$$
 where $B = 0.441 \text{ K} \cdot \text{m}^{1/2} \text{V}^{-1/2}$

• Chapter 5 - E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (pages 140-154).

See you next topic!

Diego A. Duarte diego.duarte@ufsc.br https://lats.ufsc.br

