

Federal University of Santa Catarina Graduate Program in Engineering and Mechanical Sciences

Plasmas and electrical discharges in gases (ECM410054)

Diego Alexandre Duarte Laboratory of Surface Treatments

SUMMARY

Plasmas and electrical discharge in gases

- Kinetic theory of gases
- Atomic structure
- Ionization
- Deionization
- Electron emission
- Behavior of charged particles in a gas in electric fields of low E/p
- Behavior of charged particles in a gas in electric fields of high E/p
- Glow discharges
- Plasmas

CHARGED PARTICLES IN HIGH E/p The current-voltage relation

CHARGED PARTICLES IN HIGH E/p Coefficient of ionization by electron collision

The general condition for gas ionization is:

$$eE\lambda_i \ge eV_i$$

where λ_i and V_i are the free path in the direction of the electric field and the potential of ionization, respectively. Then,

$$\lambda_i \geq \frac{V_i}{E}$$

The number of free paths *n* with length equal to or greater than *x* is given by:

$$n = n_0 \exp\left(-\frac{x}{\lambda}\right)$$

where n_0 is the total number of free paths and λ the gas mean free path (where $\lambda = 1/n_0$). Replacing x by λ_i we get the number of ionizing collisions α in the direction of the electric field:

First Townsend coefficient
$$\alpha = n_0 \exp\left(-\frac{V_i}{\lambda E}\right) = \frac{1}{\lambda} \exp\left(-\frac{V_i}{\lambda E}\right)$$

CHARGED PARTICLES IN HIGH E/p Coefficient of ionization by electron collision

where $1/\lambda = Ap$:

$$\alpha = \frac{1}{\lambda} \exp\left(-\frac{V_i}{\lambda E}\right) = Ap \exp\left(-\frac{AV_ip}{E}\right) = Ap \exp\left(-\frac{Bp}{E}\right)$$

that can also be written in the form ($B = AV_i$):

$$\frac{\alpha}{p} = A \exp\left(-\frac{B}{E/p}\right)$$

where A and B are constants for each specific gas.

Gas	A ionizations/cm-torr	<i>B</i> V/cm-torr	E/p Validity Range V/cm-torr
Air	15	365	100-800
N ₂	12	342	100-600
H ₂	5.1	138.8	20-600
He	3	34	20-150
Ne	4	100	100-400
Α	14	180	100-600
Kr	17	240	100-1000
Xe	26	350	200-800

CHARGED PARTICLES IN HIGH E/p Coefficient of ionization by electron collision

$$\frac{\alpha}{p} = A \exp\left(-\frac{B}{E/p}\right)$$

A = 12 ionizations/cm·torr B = 342 V/cm·torr

The ionization efficiency η (ionizations per unit potential drop) is defined as:

$$\eta = \frac{\alpha}{E} = \frac{A}{E/p} \exp\left(-\frac{B}{E/p}\right)$$

1

$$\frac{d\eta}{d(E/p)} = 0$$
 : $\frac{E}{p} = 342 \text{ V/cm} \cdot \text{torr}$

For a given gas, the maximum point is given by:

$$\frac{d\eta}{d(E/p)} = 0$$
 \therefore $\left(\frac{E}{p}\right)_{\text{critical}} = B$

CHARGED PARTICLES IN HIGH E/p Determination of $\boldsymbol{\alpha}$

The number electrons produced is given by:

$$dn = \alpha n dx$$
 : $n(x) = n_0 \exp(\alpha x)$

where n_0 is the density of electrons leaving the anode (primary electrons). Rewritten the above equation, we get the current flowing between the electrodes:

$$i(x) = i_0 \exp\left(\alpha x\right)$$

Curve	E(kV/cm)
1	36
2	32
3	30
4	28
5	26
6	24
7	22
8	20

Fig. 7.6 The current *i* as a function of gap distance *d* at different values of E/p in contaminated air at p = 747 torr [6].

• Chapter 7 - E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (pages 188-201).

See you next topic!

Diego A. Duarte diego.duarte@ufsc.br https://lats.ufsc.br

